JAMES RUSE AGRICULTURAL HIGH SCHOOL TERM 1 ASSESSMENT 1999 YEAR 12 2/3 UNIT

Time allowed: 85 minutes

All questions are to be attempted.
Approved calculators may be used.
All questions are of equal value.
Each question to be <u>handed in separately</u>.

QUESTION 1

- (a) Find the area of the triangle bounded between the x,y axes and the line 3x 8y = 12.
- (b) Integrate with respect to x:

(i)
$$f(x) = \frac{x}{\sqrt{x}}$$

(ii)
$$f(x) = \frac{1}{2x - 1}$$

- (iii) $f(x) = \cos 4x$
- (c) An amount of \$1500 is invested at a rate of 4.5% per annum with the interest compounded monthly. How long will it take for the investment to double its value. (Answer to the nearest month.)

QUESTION 2 (Start a new page)

- (a) The limiting sum of a geometric series is $10\frac{4}{5}$ and the first term is 18. Find the fifth term of the series.
- (b) Evaluate:

(i)
$$\int_{0}^{4} 2\pi \ dx$$

(ii)
$$\int_{1}^{2} \frac{x-4}{x^2} dx$$

(iii)
$$\int_{1}^{4} \frac{1}{\sqrt{x}} e^{\sqrt{x}} dx$$

QUESTIUN 3 (State a new page)

(b)

(a) Find the area between the curve $y = x^2 - 2x$ and the line y = 2x.

ABCD is a square with AE = CF, and EF and BD intersect at T. Prove that T bisects BD.

COPY THE DIAGRAM ONTO YOUR ANSWER SHEET

- (c) Draw a neat sketch of the curve with equation $y = \sqrt{4 x}$.
 - (ii) Find the area between the curve and the positive x and y axes.

QUESTION 4 (Start a new page)

- (a) (i) A person contributes \$1000 annually in a superannuation fund, commencing at the beginning of 1985. If interest is paid at a rate of 6% per annum, find the value of the investment at the end of year 2010.
 - (ii) How many years must the contributor be in the fund in order for the investment to be worth \$100,000.
- (b) Use Simpson's Rule with three function values to approximate the area between the x axis, the curve $y = e^{x} \ln(x + 1)$, and the lines x = 0 and x = 2. (Answer correct to two decimal places.)
- (c) The sum of the first n terms of an arithmetic sequence is given by the formula: $S_n = 2n^2 n$. Find:
 - (i) the first term.
 - (ii) the sum of the first six terms.
 - (iii) a formula for the nth term.

QUESTION 5 (Start a new page)

- (a) (i) Draw a neat sketch of the curve with equation $y = \frac{x}{x-2}$, clearly showing all asymptotes and x,y intercepts.
 - (ii) Using the graph, or otherwise, find all solutions to $\frac{x}{x-2} > 0$.
- (b) Find the volume generated when the area between the x-axis, the curve $y = \sqrt{\sin 2x}$, and the line $x = \frac{\pi}{8}$ is rotated about the x-axis.
- (c) How many multiples of seven are there between the numbers 500 and 14,495.
- (d) Draw a neat sketch of the curve with equation $y = \sqrt{8 + 2x x^2}$.

END of PAPER

